Biomolecular Event Extraction using a Stacked Generalization based Classifier

نویسندگان

  • Amit Majumder
  • Asif Ekbal
  • Sudip Kumar Naskar
چکیده

In this paper we propose a stacked generalization (or stacking) model for event extraction in bio-medical text. Event extraction deals with the process of extracting detailed biological phenomenon, which is more challenging compared to the traditional binary relation extraction such as protein-protein interaction. The overall process consists of mainly three steps: event trigger detection, argument extraction by edge detection and finding correct combination of arguments. In stacking, we use Linear Support Vector Classification (Linear SVC), Logistic Regression (LR) and Stochastic Gradient Descent (SGD) as base-level learning algorithms. As meta-level learner we use Linear SVC. In edge detection step, we find out the arguments of triggers detected in trigger detection step using a SVM classifier. To find correct combination of arguments, we use rules generated by studying the properties of bio-molecular event expressions, and form an event expression consisting of event trigger, its class and arguments. The output of trigger detection is fed to edge detection for argument extraction. Experiments on benchmark datasets of BioNLP2011 show the recall, precision and Fscore of 48.96%, 66.46% and 56.38%, respectively. Comparisons with the existing systems show that our proposed model attains state-of-the-art performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stacked Generalization for Medical Concept Extraction from Clinical Notes

The goal of our research is to extract medical concepts from clinical notes containing patient information. Our research explores stacked generalization as a metalearning technique to exploit a diverse set of concept extraction models. First, we create multiple models for concept extraction using a variety of information extraction techniques, including knowledgebased, rule-based, and machine l...

متن کامل

Classifier Subset Selection for the Stacked Generalization Method Applied to Emotion Recognition in Speech

In this paper, a new supervised classification paradigm, called classifier subset selection for stacked generalization (CSS stacking), is presented to deal with speech emotion recognition. The new approach consists of an improvement of a bi-level multi-classifier system known as stacking generalization by means of an integration of an estimation of distribution algorithm (EDA) in the first laye...

متن کامل

An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization

Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...

متن کامل

An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization

Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...

متن کامل

1 Learning Named-Entity Recognition Rules

This paper defines a new stacked generalization framework in the context of information extraction (IE) from online sources. The proposed setting removes the constraint of applying classifiers at the base-level. A set of IE systems are trained instead to identify relevant fragments within text documents, which differs significantly from the task of classifying candidate text fragments as releva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016